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Introduction 

• Advanced Driver Information Technology GmbH (short: ADIT) 

– Joint Venture between BOSCH and DENSO 

– Platform Development for IVI-Systems 

– OSS Expertise, Genivi, etc. 

• Eugen Friedrich 

– Staff Graphics Engineer 

– efriedrich@de.adit-jv.com 

• Michael Teyfel 

– Graphics Engineer 

– mteyfel@de.adit-jv.com 
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Outline 
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• Modern HMIs in IVI 

• Graphics Sharing within GENIVI 

• Generic Use-Cases of Distributed HMI Interaction 

– Display Sharing [Display Sharing] 

– Sharing of Already Rendered Content [Waltham] 

– Sharing Metadata to Be Able to Render Content [Ramses] 

• Live Demo and Source Code Walkthrough [Waltham] 



Modern HMIs in IVI 

• Multiple displays 

• Multiple ECUs 

• External content: 

– Smartphone 

– Cloud 

• Seamless experience and common user interface 

• Several opposing requirements need to be resolved 

• New technologies and concepts are required to achieve this goal 
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Graphics Sharing within GENIVI 

• GPU Sharing 

• Display Sharing 

• Surface Sharing 

• API Remoting 

• Shared State, Independent Rendering 
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Generic Use-Cases of Distributed HMI Interaction 



Display Sharing 

• A physical display can be shared across multiple operating 

systems 

• HW-compositor-unit composites final display buffer from HW 

layers of each OS 

• Can be realized in virtualized environments 

• Implementation can be done in corresponding display drivers 

• Support of hardware or hypervisor may be required to share the 

hw-compositor-unit 
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Display Sharing 
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Each VM has access to 

limited display resources, 

i.e displays and layers 
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all resources 
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Display Sharing 

• Pros 

– Sharing is implemented in lower-level software: display driver 

– Upper layer of software are not affected and don’t need any modification 

• Cons 

– Requires virtualization environment or specialized hardware 

– Interaction and synchronization between content from different units is 

difficult to achieve 
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Sharing of Already Rendered Content 

• Operating systems exchange graphical (bitmap) content and each 

OS has full flexibility to use this content 

• Sharing should be implemented on system compositor level 

• Exemplary implementation: Wayland / Weston / Waltham 

Company (Demo) 

10   |   April 19, 2018   |   Copyright © GENIVI Alliance 2017  



Sharing of Already Rendered Content 
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Sharing of Already Rendered Content 

• Pros 

– Interaction between content from different units is possible to a quite good 

extend without modification in the applications 

• Cons 

– Depending on the system implementations for several system 

compositors are required 

– Stable network connection between the units is required 

– In case of virtualization shareable graphic memory could be required 
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Sharing Metadata to Be Able to Render Content 

• Sharing in implemented on the rendering API level, also know as 

API remoting 

– Remoting the well know OpenGL ES API would keep the application code 

untouched 

• But has some inherit limitation in term of performance and interactions between 

different remote streams 

– Introducing new API requires quite big modifications in the application but 

can solve limitations of the OpenGL ES API remoting and provide new 

features: RAMSES 

• Stable network connection is required 

– With API remoting recovering from the network issues is difficult 

• Frame drop or even restarting of connection could be a consequence 
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Sharing Metadata to Be Able to Render Content 

• Pros 

– Implementation of seamless and integrated user experience is possible to 

a very high degree 

• Cons 

– Modifications up to the application level could be required 

– Effort in the design face of the system can be quite high 

– Every receiver of stream requires a rendering hardware  
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Live Demo and Source Code Walkthrough (Waltham) 

 



Wayland / Weston / Waltham Company 

   Hardware unit 1 is sharing content with hardware unit 2 
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Details of Waltham Related Components 

• Waltham 

– A library which implements the communication between Waltham client 

and Waltham server 

• Waltham Transmitter 

– A Waltham client that is implemented as a Weston plugin 

– Has direct access to the application’s buffer 

– Uses additional plugin (Waltham renderer) to transmit the buffer to the 

Waltham server, in the current implementation by using gstreamer 

– Creates an additional Wayland output so app-controller can just add the 

layer or surface to this output and remoting will be started 
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Details of Waltham Related Components 

• Waltham Server 

– A component that handles the connections from Waltham clients and 

receives the buffers 

– Also responsible to provide the buffer to the system compositor 
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Live Demo and Source Code Walkthrough 
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* * 

Waltham Transmitter 

Renesas R-Car Starterkit M3 

IP 192.168.2.51 

EGLWLMockNavigation is running 

Waltham Server (Receiver) 

Renesas R-Car Starterkit M3 

IP 192.168.2.52 

TCP/IP 



Thank you! 

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org 

Contact us: genivi-projects@lists.genivi.org 

efriedrich@de.adit-jv.com 

mteyfel@de.adit-jv.com 
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