
Wayland-IVI-Extension / Waltham Usage in Shared

Graphics Environment
April 18, 2018

Eugen Friedrich, Michael Teyfel
ADIT, GENIVI Alliance

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2018.

Introduction

• Advanced Driver Information Technology GmbH (short: ADIT)

– Joint Venture between BOSCH and DENSO

– Platform Development for IVI-Systems

– OSS Expertise, Genivi, etc.

• Eugen Friedrich

– Staff Graphics Engineer

– efriedrich@de.adit-jv.com

• Michael Teyfel

– Graphics Engineer

– mteyfel@de.adit-jv.com

2 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Outline

3 | April 19, 2018 | Copyright © GENIVI Alliance 2018

• Modern HMIs in IVI

• Graphics Sharing within GENIVI

• Generic Use-Cases of Distributed HMI Interaction

– Display Sharing [Display Sharing]

– Sharing of Already Rendered Content [Waltham]

– Sharing Metadata to Be Able to Render Content [Ramses]

• Live Demo and Source Code Walkthrough [Waltham]

Modern HMIs in IVI

• Multiple displays

• Multiple ECUs

• External content:

– Smartphone

– Cloud

• Seamless experience and common user interface

• Several opposing requirements need to be resolved

• New technologies and concepts are required to achieve this goal

4 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Graphics Sharing within GENIVI

• GPU Sharing

• Display Sharing

• Surface Sharing

• API Remoting

• Shared State, Independent Rendering

5 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Generic Use-Cases of Distributed HMI Interaction

Display Sharing

• A physical display can be shared across multiple operating

systems

• HW-compositor-unit composites final display buffer from HW

layers of each OS

• Can be realized in virtualized environments

• Implementation can be done in corresponding display drivers

• Support of hardware or hypervisor may be required to share the

hw-compositor-unit

7 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Display Sharing

8 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Each VM has access to

limited display resources,

i.e displays and layers

Hypervisor has access to

all resources

HW compositon unit

creates the final

framebuffer

Display

Hypervisor

RTOS Linux

App App

HW Composition Unit

Display Controller

HW

Display Sharing

• Pros

– Sharing is implemented in lower-level software: display driver

– Upper layer of software are not affected and don’t need any modification

• Cons

– Requires virtualization environment or specialized hardware

– Interaction and synchronization between content from different units is

difficult to achieve

9 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Sharing of Already Rendered Content

• Operating systems exchange graphical (bitmap) content and each

OS has full flexibility to use this content

• Sharing should be implemented on system compositor level

• Exemplary implementation: Wayland / Weston / Waltham

Company (Demo)

10 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Sharing of Already Rendered Content

11 | April 19, 2018 | Copyright © GENIVI Alliance 2017

App

Transmitter

Server

(Receiver)

Compositor

ECU1 ECU2

Display

TCP/IP
App

Compositor

Sharing of Already Rendered Content

• Pros

– Interaction between content from different units is possible to a quite good

extend without modification in the applications

• Cons

– Depending on the system implementations for several system

compositors are required

– Stable network connection between the units is required

– In case of virtualization shareable graphic memory could be required

12 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Sharing Metadata to Be Able to Render Content

• Sharing in implemented on the rendering API level, also know as

API remoting

– Remoting the well know OpenGL ES API would keep the application code

untouched

• But has some inherit limitation in term of performance and interactions between

different remote streams

– Introducing new API requires quite big modifications in the application but

can solve limitations of the OpenGL ES API remoting and provide new

features: RAMSES

• Stable network connection is required

– With API remoting recovering from the network issues is difficult

• Frame drop or even restarting of connection could be a consequence

13 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Sharing Metadata to Be Able to Render Content

• Pros

– Implementation of seamless and integrated user experience is possible to

a very high degree

• Cons

– Modifications up to the application level could be required

– Effort in the design face of the system can be quite high

– Every receiver of stream requires a rendering hardware

14 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Live Demo and Source Code Walkthrough (Waltham)

Wayland / Weston / Waltham Company

 Hardware unit 1 is sharing content with hardware unit 2

16 | April 19, 2018 | Copyright © GENIVI Alliance 2017

cmp Overview of component

wayland waltham

«wayland-client»

application

«waltham-server»

waltham-server

«wayland-server»

weston

«waltham-client,...

waltham-transmitter

waltham-

renderer

gstreamer

«wayland-server»

weston

«wayland-client»

app-controler

«wayland-client»

render-client

«weston-plugin»

ivi-output-controller

«weston-plugin»

drm-backend

«weston-plugin»

gl-renderer

drmGLES

«weston-plugin»

ivi-output-controller

«weston-plugin»

drm-backend

«weston-plugin»

gl-renderer

Hardware Unit 1 Hardware Unit 2

waylandwaltham gstreamer drmGLES

«wayland-client»

application

«wayland-client»

app-controler

TCP/IP

TCP/IP

Details of Waltham Related Components

• Waltham

– A library which implements the communication between Waltham client

and Waltham server

• Waltham Transmitter

– A Waltham client that is implemented as a Weston plugin

– Has direct access to the application’s buffer

– Uses additional plugin (Waltham renderer) to transmit the buffer to the

Waltham server, in the current implementation by using gstreamer

– Creates an additional Wayland output so app-controller can just add the

layer or surface to this output and remoting will be started

17 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Details of Waltham Related Components

• Waltham Server

– A component that handles the connections from Waltham clients and

receives the buffers

– Also responsible to provide the buffer to the system compositor

18 | April 19, 2018 | Copyright © GENIVI Alliance 2017

Live Demo and Source Code Walkthrough

19 | April 19, 2018 | Copyright © GENIVI Alliance 2017

*
h

tt
p

s
:/

/w
w

w
.d

ig
ik

e
y.

c
o

m
/c

a
ta

lo
g
/e

n
/p

a
rt

g
ro

u
p
/r

-c
a

r-
s
ta

rt
e
r-

k
it
-p

ro
/7

0
3
5

8

* *

Waltham Transmitter

Renesas R-Car Starterkit M3

IP 192.168.2.51

EGLWLMockNavigation is running

Waltham Server (Receiver)

Renesas R-Car Starterkit M3

IP 192.168.2.52

TCP/IP

Thank you!

Visit GENIVI at http://www.genivi.org or http://projects.genivi.org

Contact us: genivi-projects@lists.genivi.org

efriedrich@de.adit-jv.com

mteyfel@de.adit-jv.com

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 (CC BY-SA 4.0)

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries.

Copyright © GENIVI Alliance 2018.

http://www.genivi.org/
http://projects.genivi.org/
mailto:genivi-projects@lists.genivi.org
mailto:genivi-projects@lists.genivi.org
mailto:genivi-projects@lists.genivi.org

