GENIVI AMM

Hypervisor workshop
Virtualization for Multi-core, SoC peripheral hardware and special-purpose CPUs
Peripherals sharing

• When no sharing is needed...
 • Direct pass through (IPMMU only)
 • Full virtualization (emulation)

• Para-virtualization
 • Centralized control over HW
 • Complex control logic (mixing, composing)
 • Lower performance

• Hardware-assisted virtualization
 • IPMMU needed
 • Only control logic supported by HW
 • High performance
Co-processors support

- Co-processor = DSP, GPU, IPU, ...
 - Data-intensive computing scenarios
 - Memory shared with main CPU
 - SMMU controlled by main CPU
 - Has firmware
 - No native virtualization support
Heterogeneous multicore

- E.g. Arm big.LITTLE
- vCPU <-> pCPU?
 - Performance
 - RT constraints (soft or firm)
 - Energy-aware scheduling (EAS)
Audio system design with HVs
Audio architecture
Audio backend interface

- **Alsa**
 - Has:
 - Route different streams to different HW devices
 - Mix few streams to the one HW device with dmix plugin
 - Volume control per HW device but not per audio stream
 - Need to be done:
 - Audio manager
 - Per stream volume control

- **Pulse**
 - Has:
 - Route different streams to different HW devices
 - Mix few streams to the one HW device with dmix plugin
 - Volume control per HW device and per stream
 - Automatic static ducking
 - Need to be done:
 - Audio manager
GENIVI Audio Manager

• Pros:
 • The core part is lightweight and simple
 • Extendable functionality with plugins
 • Rich sets of policies based on triggers, conditions and actions
 • Controls external HW
 • Routes different boards, different audio domains
• Cons:
 • Not so many plugins are currently available (generic control plugin, routing ALSA plugin and POC of routing pulse plugin)
 • Example control plugin is a bit complicated
 • For normal usage application should communicate with AudioManager through DBus, GENIVI Common API or custom command plugin
Implementation for Xen

- PV Sound protocol for Linux kernel https://git.kernel.org/pub/scm/linux/kernel/git/xen/tip.git/tree/include/xen/interface/io/sndif.h?h=for-linus-4.17&id=cd6e992b3aab072cc90839508aaf5573c8f7e066
 - Already in kernel, updates planned for 4.17
 - Upstreamed!
- PV Sound backend for Xen https://github.com/xen-troops/snd_be
- GENIVI Audio Manager extensions with Pulse https://github.com/xen-troops/AudioManagerPlugins
Graphics/GPU Sharing
Graphics Sharing & Distributed HMI

• GPU sharing
 The GPU can be used from multiple operating systems, so it is shared. Concurrent access to the physical GPU has to be controlled by the hypervisor, hardware or other means which are implementation specific.

• Display sharing
 The physical display can be shared across multiple operating systems. HW compositor unit composites final display buffer from HW Layers of each OS. This requires virtualization of the display controller hardware.

 • Studied technologies:
 • Since this is mostly hardware specific we have not (yet) looked at it much.
 • Layer-Management might be seen as a related software abstraction, but intended a for single-system.
Display sharing

Local Apps → PV Display BE (Wayland or DRM/KMS) → Wayland → Display Manager → PV Display FE DRM/KMS

Application Surfaces → Wayland → Display Manager Configuration

Virtual Displays Surfaces → Wayland

HW Displays → DRM/KMS HW Drivers

Userspace display clients → Virtual Displays

xenstore (displays configuration)
Implementation for Xen

- PV DRM protocol for Linux kernel https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1650261.html
 - Just upstreamed to kernel!
 - Upstreamed!
- PV Display & Input backend for Xen https://github.com/xen-troops/displ_be
- GENIVI Wayland IVI extensions
Coprocessor (incl. GPU) sharing in Xen