Realizing an end-to-end vehicle-to-cloud communication framework

GENIVI Cloud & Connected Services Project

Kevin Valdek – CTO, High Mobility
Gunnar Andersson – Development Lead, GENIVI Alliance

Automotive World | May 4, 2020

The content on this presentation is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Why is GENIVI Alliance working on a reference architecture for vehicle-data?

GENIVI has promoted Open shared software and standards and created business opportunities in the automotive industry for over 10 years

- **2016-2017** – Cross-Domain Interaction, adapting to Multi-OS reality, safety demands
- **2018-...** – Multi-OS, Connected Cockpit, Virtualization,
 = Integration technologies for diverse, distributed and cloud-connected EE architectures.
- **2020-...** – Big-picture, end-to-end integration, adapt to latest industry trends

Example: The Cloud & Connected Services Project
Agenda

• Project Charter
• Data Model
 • Common Data Model
 • Vehicle Signal Specification — VSS
• Communication Framework & Architecture
 • Data Capturing & Cloud Transfer
 • Neutral Servers & 3rd Party Access
• Proof-of-Concept Implementation
 • Electric Vehicle Use-case
 • Timeline
• Contributing
Cloud & Connected Services – Project Charter

• In just a few years, connected cars will become a predominant form of automotive transportation
• A number of actors now working at breaking down the barriers for mobility services based on vehicle
data to create new value
• We are currently seeing a fragmented ecosystem where different actors are using different solutions to
access the data of connected cars
• In GENIVI we believe there is a need to join forces and harmonize activities when designing and
implementing the full data-oriented connected vehicle architecture in order to:
 • Enable easy interoperability of building blocks, flexibility and choice
 • Develop common solutions and software
 • Enable access to all data we want to exchange
 • Control access to data
 • Enable user privacy and data security
 • Clarify actors, roles and responsibilities
 • Facilitate business opportunities and contractual agreements
Different types of vehicle data

• **Personalised vehicle data**
 - Identifiable to a specific VIN
 - Used by 3rd party services to offer tailored services to users
 - Typical delivery method point-to-point requests e.g. a REST API

• **Pseudonymized vehicle data**
 - Most identifying fields within a database are replaced with artificial identifiers, or pseudonyms
 - Neither fully anonymous nor directly identifying
 - Typically delivered in bulk in dataset from many vehicles

• **Anonymized vehicle data**
 - All identifiers, both direct and indirect are removed
Services and general data needs

- **Personalised services**
 - Retrieval of the latest cached vehicle data from the OEM server
 - Explicit consent required by the vehicle owner or the fleet owner for each individual 3rd party service
 - Event subscriptions and notifications when new data is available
 - Retrieval of historical vehicle states, e.g. the data of the last 12 hours
 - Streaming API with real-time data updates for advanced services

- **Big Data services**
 - Retrieval of bulk historical data
 - Purpose consent required by the car owner or the fleet owner
 - Analytics and histograms
 - Streaming API with configurable parameters (geolocation)
Data Model
Common Data Model

- Everyone we speak to say – **Yes, the industry needs this!**

- Potential for a shared data catalog, for a substantial subset of the vehicle data
- Shared formats, methods, and tools to manipulate the entire data set, including shared data catalog and future (some proprietary) additions
- Previous projects have come to similar conclusions – so far limited effect
- **Common data model** could enable all data-oriented use cases from **end-to-end**
- **End-to-end** could mean from *vehicle sensor* to *third-party consumer in the cloud*
- Some legacy parts will however not change – requires some translation code.

- Promote the common data model = minimize instances of data translation!
Common Data Model – prior analysis

GENIVI Cloud & Connected services has produced a Gap-analysis document

Includes previous major initiatives, some active, and some stopped

- CVIM (Automat project, completed)
- SENSORiS
- ISO 20078 Extended Vehicle
- Android Automotive vehicle properties
- Vehicle Signal Specification (VSS)

Based on the conclusion, a potential plan forward happens in several projects:

- → GENIVI Android Automotive SIG
- → GENIVI Cloud & Connected services, reference architecture
- → Continued collaboration with W3C Automotive & Transportation group
Vehicle Signal Specification (VSS)

- Proposed Common “Data Model” representation for Automotive (Formally, it’s a Data Taxonomy) – Several years in development
- Organizes “all” vehicle data in a hierarchical tree
- Spin-off projects work to extend it to a graph-based Data Ontology
- Defines name, purpose, type, unit, signal quality/reliability/sampling frequency, relationships to other data, etc. Layered design & extensible for additional metadata.
- Simple, plain-text based format. Easy to read, easy to write.
- Extensible tools & conversions
- Defines standard set of signals for whole industry. Enables also proprietary extension.
- Adopted by W3C – the basis for the Vehicle Information Service Specification (the Web protocol to access car data) in version 1 and upcoming “Gen 2”
- Positive feedback around the industry. We propose it should take off as the standard way to describe vehicle data.
Plain-text format is the only way to go. Future proof.

The choice must be both of these things!
1) Computer-processable and convertible to any other useful format
2) Easy to read and write

Structured text in the “YAML” format fits the bill!
- Data Analysts find it easy to read and write
- Developers can handle it like “code”
- Trivially convertible to other computer program preferred formats, (e.g. JSON)
Vehicle Signal Specification – structure

Branches (data organization)

Attributes (fixed value)

Signals (variable)
- Vehicle.Drivetrain.FuelSystem.AverageConsumption

Actuators
Vehicle Signal Specification – example

- datatype: uint8
- unit: percent
- type: sensor
- description: Washer fluid level as a percent.
 0 = Empty. 100 = Full.

File organization is also hierarchical and can be version controlled in separate files:
E.g.: If the file `Vehicle/Body/Windshield.vspec` defines `Front.WasherFluid.Level`
it can result (this is also flexible) in: `Vehicle.Body.Windshield.Front.WasherFluid.Level`

Additional metadata can be added (or substracted or modified) in any number of separate VSS layers.
VSS2 – new features

- The terms VSS and VSS2 are used mostly interchangeably.
- In daily conversation we say “VSS2” to highlight that there have been some format changes and new features accepted for the upcoming version 2.0:
 - More efficient instantiation of similar nodes, reducing redundancy in tree definition
 - Slight modification of the format for more standard usage of YAML
 - “Array” data types (details still under discussion)
 - These changes are significant enough to highlight the new major version number
VSS2 – Summary

• The Vehicle Signal Specification provides two complementary and separately useful things:

 1) A potentially industry-wide common data catalog
 • A starting point for widely applicable data-related development
 • Essentially forms a standard “API” for vehicle data access
 • Adopted by W3C official automotive communication protocols

 2) A shared description format, methods, tools, code-generators and binding libraries to communication technologies
 • Note the advantage of this, even for proprietary extensions of the data tree!
Value Exchange Formats

- VSS defined the **Model** and **Taxonomy** of Vehicle Data items
- We must add: data encoding, formats, protocols, bindings
- **Value Exchange Formats** – analyzes message formats for data exchange
 → Define a High-level, *abstract*, “protocol” to exchange data
- Promote alignment of naming, common understanding of terms
- Support on-demand values, bundles of values, time-series, snapshots of related data (freeze-frames), and “edge processed” values such as statistics
- Influence from:
 - SENSORiS, CVIM (Automat)
 - W3C Geospatial, and other standards
- Can act as inspiration to *concrete* protocols, e.g. W3C Gen2
Communication Framework & Architecture
In-vehicle data capturing

- VSS2 data from ECUs collected through typical in-vehicle protocols e.g.
 - SOME/IP (Scalable service-Oriented Middleware over IP)
 - DDS (Data Distribution Service)
 - Web protocols (HTTP/REST)
- Data protocol translation to VSS2 from proprietary data encoding (e.g. CAN)
- Local vehicle data storage
OEM Cloud transfer and storage

- Gen2 is the second generation of a vehicle API developed by the W3C automotive group
- Data transport over HTTPS (REST API) or secure WebSockets using the VSS2 data model
- The vehicle acts as a data server
- OEM Cloud acts as a data client
- Database schema created out of the VSS2 specification within the project workgroup
OEM Cloud storage

• Data Lake based on object storage
• Proof-of-Concept scope:
 • VSS-to-DB-adapter
 • Maps from VSS paths to database tables
 • Provides access to VSS metadata
 • Relational database
 • Provides a logical link between VIN and all leaf node data points
 • For Time-InVariant data points (TIV tables)
 • Attribute nodes
 • For Time-Variant data points (TV tables)
 • Sensor/Actuator/.. nodes
Vehicle data buffering

• Necessary to buffer data:
 • Poor connectivity scenarios
 • Scenarios of high-frequency data capture
 • Scenarios of complex data jobs
 • Statistical measurements
Neutral Servers & Data Marketplaces

- VSS2 data delivery from the OEM Cloud to:
 - Neutral Servers
 - Data Marketplaces
- ISO 20078 Extended Vehicle principles taken into account
- Car owner authentication with OpenID
- Car owner consent with OAuth2
- Both poll/push and filtered data request via common web technologies:
 - REST API
 - GraphQL
 - Socket feed
3rd party data access

• Direct data access by 3rd parties in certain scenarios:
 • Framework flexibility
 • Safety critical
 • Business critical
Communication Framework & Architecture
Proof-of-Concept implementation
Proof-of-Concept objectives

• To get fast results in evaluating and confirming the communication framework
• To identify the technologies for each component, and which APIs that need to be standardised
• To introduce changes in the framework based on real life experience
• To gather experience that can be used to build a reference architecture as a future step

• Important: software-based architecture only
Demonstrated use-case

- Objective is to show Electric Vehicle (EV) charging data points

Updated set of data points submitted to VSS and W3C Automotive WG for incorporation into the data tree: (Pull request: https://github.com/GENIVI/vehicle_signal_specification/pull/154)

- Example of EV data points
Timeline

• Milestone 1 – GENIVI Virtual Technical Meeting (12-14 May)
• Milestone 2 - Internal milestone (early Q3 - July)
• Milestone 3 - Fall All Member Meeting, Leipzig, Germany (last week of October)
• Milestone 4 - CES 2021, Las Vegas, USA (early January 2021)

• GENIVI Virtual Technical Meeting: register at https://www.eventleaf.com/geniviVTS
Contributing

- **Weekly telcos**
 - Mondays - 11:30 CET (Asia friendly time) – Communication Framework
 - Mondays - 17:00 CET (US friendly time) - Vehicle Data, sprint & backlog review
 - Wednesdays - 17:00 CET (US friendly time) - Communication Framework
 - Cloud & Connected Services Project Wiki: https://at.projects.genivi.org/wiki/x/PIAVAg
 - Cloud & Connected Services Proof-of-Concept Work Breakdown: https://at.projects.genivi.org/wiki/x/84AkAw
Thank you!

Visit GENIVI:
http://www.genivi.org
http://projects.genivi.org

Contact us:
help@genivi.org